Service Business Assessments

Identify actions to improve performance and customer experience

Why

To start any change process, leaders must first understand where they currently stand now or the AS-IS state so as to develop a vivid vision of where they want to go, or the TO-BE state. Si2 Service Assessments allow them to quickly understand the situation. They are practical in nature, do not need weeks to set up, are virtual and easy to execute. They form the core of many initial discussions we have with organisations. Si2 has developed 4 standard methods that probe different elements of your Service Business:

  • Operational processes and tools
  • Portfolio and fit with corporate & sales strategies
  • Unseen revenue and margin opportunities in your installed base
  • Where weak skills and capabilities inhibit growth
Who should be involved

Management, Service operations, Sales, Marketing, Engineering, Commercial. 

Up to 40 people can be involved in an assessment

How the programme works

Si2 Programmes are tailored to the specific needs of situation, pulling on a numbers of methods which Si2 partners have found to be good practice in their careers. They are very practical, typically collaborative and all have the goal of quickly delivering value for the programme. Si2 has four standard assessments which it can deploy within weeks.

  • Service Operations Sanity Check: A customer survey is usually a very time consuming and costly exercise. A more cost-effective option is the Service Operations Sanity Check, which has been designed to involve people from all parts of the company who have customer interactions and even customers themselves. It provides valuable feedback and insight into the customer perception of service operations. The assessment allow management to understand which parts of service operations are performing well, where improvement is needed and where the main challenges are. An action plan is recommended, and advice provided on the best way to execute the improvement plan.
  • Service Porfolio Check: Identifies whether the current Serice Portfolio is aligned with Service Strategy, Service Sales Management and Service Marketing. It is a structured set of questions that Si2 uses to identify strengths and a gaps in thinking.
  • Installed Base Evaluation:  Particularily effective for equipment manufacturers, this analysis combines knowledge of the installed base technology and location, with known”Cost of Service” to identify revenue and margiopportunities that can be targeted for growth.
  • Capabilities Evaluation: Identify current skills and capabilities within the organisation, which can be used as a the basis for a professional development programme. 
  • Facilitated Management Workshop(s): Often used to start or revise outcomes, the value of these workshops is in the facilitation process, engaging members of the team into the change process.

Service in Industry

Deep Dive into the industrial service business.

Join our community to receive analysis, insight, news and more.
We will never share your data

Service Innovation for value-driven opportunities:

Facilitated by Professor Mairi McIntyre from the University of Warwick, the workshop explored service innovation processes that help us understand what makes our customers successful.

In particular, the Customer Value Iceberg principle goes beyond the typical Total Cost of Ownership view of the equipment world and explores how that equipment impacts the success of the business. It forces us to consider not only direct costs associated with usage of the equipment such but also indirect costs such as working capital and risks.

As an example, we looked at how MAN Truck UK used this method to develop services that went beyond the prevailing repairs, parts and maintenance to methods (through telematics and clever analytics) to monitor and improve the performance and  fuel consumption of their trucks. This approach helped grow their business by an order of magnitude over a number of years.

Mining Service Management Data to improve performance

We then took a deep dive into how Endress + Hauser have developed applications that can mine Service Management data to improve service performance:  

Thomas Fricke (Service Manager) and Enrico De Stasio (Head of Corporate Quality & Lean) facilitated a 3 hour discussion on their journey from idea to a real working application integrated into their Service processes. These were the key learning points that emerged:

Leadership

In 2018 the Senior leadership concluded that to stay competitive they needed to do far more to consolidate their global service data into a “data lake’ that could be used to improve their own service processes and bring more value to customers. As a company they had already seen the value of organising data as over the past 20 years for every new system they already had a “digital twin” which held electronically all the data for that system in an organised fashion. Initially, it was basic Bill of Material data, but has since grown in sophistication. So a good start but they needed to go further, and the leadership team committed resources to do this.

  • The first try: The project initially focused on collecting and organising data from its global service operations into a data lake.  This first phase required the development of infrastructure, processes and applications that could analyse service report data and turn it into actionable intelligence. The initial goal was to make internal processes more efficient, and so improve the customer experience. E+H looked for patterns in the reports of service engineers that could:
    • Be used to improve the performance of Service through processes and individuals
    • Be used by other groups such as engineering to improve and enhance product quality.
  • Outcome: Eventhough progress was made in many areas, nevertheless, even using advanced statistical methods, they could not extract or deliver the value they had hoped   for from the data. They needed to look at something different.
  • Leveraging AI technologies: The Endress+Hauser team knew they needed to look for patterns in large data sets. They had the knowledge that self-learning technologies that are frequently termed as AI, could potentially help solve this problem. They teamed up with a local university and created a project to develop a ‘Proof of Concept’. This helped the project gain traction as the potential of the application they had created started to emerge. It was not an easy journey and required “courage to trust the outcomes, see them fail and then learn from the process”. However after about 18 months they were able to integrate the application into their normal working processes where every day they scan the service reports from around the world in different languages to identify common patterns in product problems, or anomalies in the local service team activities. This information is fed back to the appropriate service teams for action. The application also acts as a central hub where anyone in the organisation can access and interrogate service report data to improve performance and develop new value propositions.
  • Improvement:  The project does not stop there. It is now embedded in the service operations and used as a basic tool for continuous improvement. In effect, this has shifted the whole organization to be more aware of the value of their data.

Utilizing AI in B2B services

Regarding AI, our task was to uncover some of the myths and benefits for service businesses and the first task was to agree on what we really mean by AI among the participants. It took time, but we discovered that there are really two interpretations which makes the term rather confusing. The first is a generic term used by visionaries and AI professionals to describe a world of intelligent machines and applications. Important at a social & macroeconomic level, but perhaps not so useful for business operations -at least at a practical level. The second is an umbrella term for a group of technologies that are good at finding patterns in large data sets (machine learning, neural networks, big data, computer vision), that can interface with human beings (Natural Language Processing) and that mimic human intelligence through being based on self-learning algorithms. Understanding this second definition and how these technologies can be used to overcome real business challenges is where the immediate value of AI sits for today’s businesses. It was also clear that the implication of integrating these technologies into business processes will require leaders to look at the change management challenges for their teams and customers.

To understand options for moving ahead at a practical level we first looked briefly at Husky through an interview with CIO Jean-Christophe Wiltz to CIOnet where we learned that i) real business needs should tailored drive technology implementation, and ii) that before getting to AI technologies, there is a need to build the appropriate infrastructure in terms of database and data collection, and, most importantly, the need to be prepared to continually adapt this infrastructure as the business needs change.